TECHNICAL SERVICE

BRASKEM RIGEO:

A evolução dos **grades bimodais** para produção de **EMBALAGENS** para produtos **químicos** e **agroquímicos**

por FLÁVIA CORTINOVE

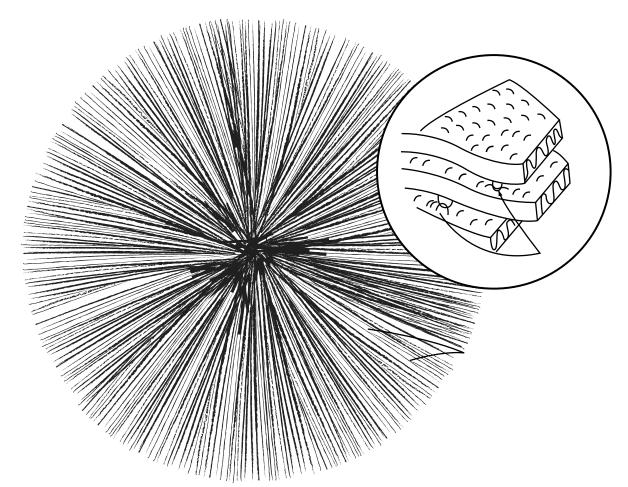
INTRODUÇÃO

Embalagens sopradas de polietileno (PE) são utilizadas no mercado de produtos químicos e agroquímicos. Os grades para essas aplicações sempre tiveram dois objetivos bem definidos: alta rigidez e alta resistência ao environmental stress cracking (ESCR).

A rigidez do produto está relacionada à necessidade de empilhamento das embalagens. Conforme seus desenhos foram sendo aprimorados e permitindo auto empilhamento, essa propriedade foi sendo mais exigida.

Já a resistência ao ESCR está relacionada à capacidade da peça em se conservar de quebras sob a condição combinada entre tensão e um agente químico.

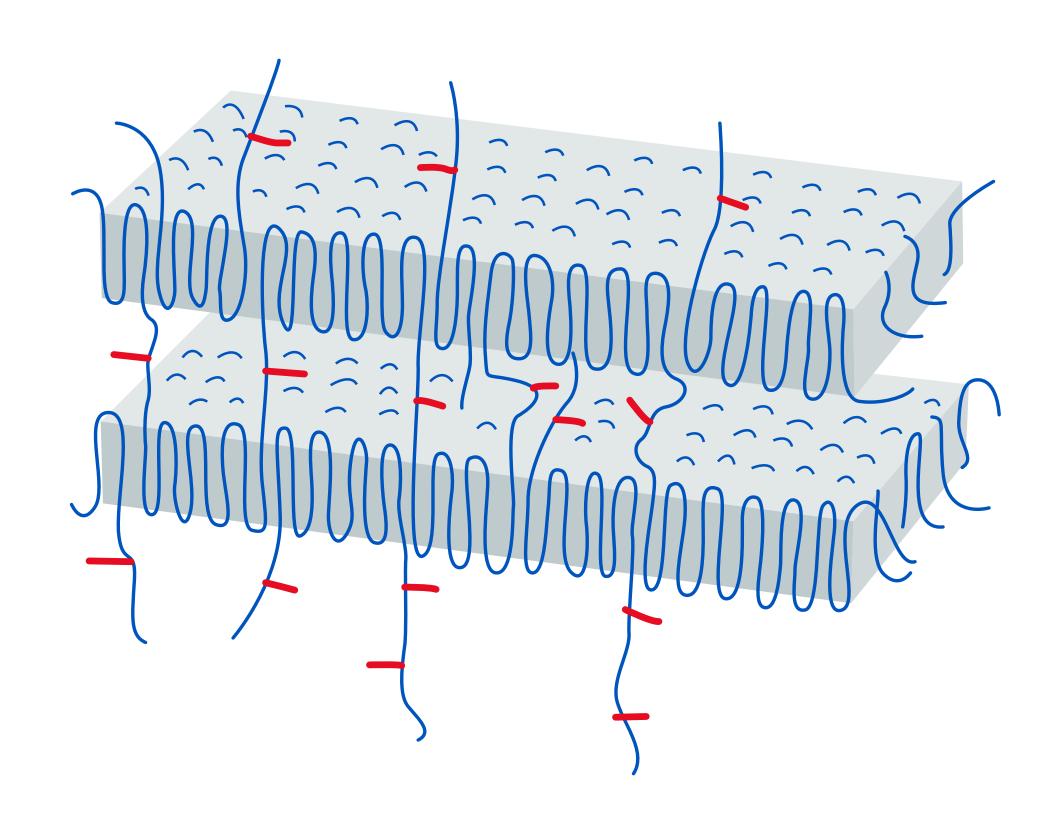
No Brasil, desde janeiro de 2007, há exigências para o transporte de substâncias perigosas. As embalagens para esses produtos necessitam ter aprovação do Inmetro e atender às resoluções vigentes. A resolução atual da ANTT é a 5.232.


O DESAFIO DE DESENVOLVIMENTO DE NOVOS PRODUTOS:

Novos materiais visam atender aos requisitos de mercado: rigidez, ESCR e resistência ao impacto. Porém a alteração de uma propriedade pode impactar negativamente em outra.

Rigidez

A rigidez de um PEAD depende da cristalização de suas moléculas. O modelo que representa a cristalização do PEAD é o de lamelas, na qual as cadeias dobram sobre si mesmas de forma regular, estabelecendo um "plano de dobramento". O PEAD é um material semicristalino e terá regiões cristalinas e regiões amorfas (as que não se dobram e não se organizam). O conjunto de diversas lamelas formará no polietileno uma estrutura conhecida como esferulito. Quanto maior a cristalinidade do material, maior será a densidade e, portanto, maior será sua rigidez.


Esquematização de esferulito

Referência: Hannay, N. B., ed. Treatise on Solid State Chemistry: Volume 3 Crystalline and Noncrystalline Solids. New York: Plenum Press, 1976

RESISTÊNCIA AO ENVIRONMENTAL STRESS CRACKING (ESCR)

A quebra por ESCR é um fenômeno que ocorre quando um material plástico é colocado sob tensão e em contato com um agente químico simultaneamente.

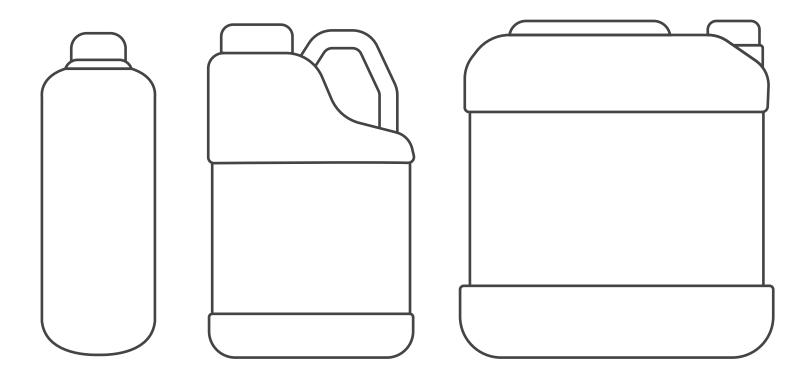
O agente químico não causa um ataque químico direto ou uma degradação molecular. Surfactantes são um exemplo desses agentes e são frequentemente utilizados na produção de defensivos agrícolas. Ele interage com a estrutura molecular interferindo nas ligações de forças intermoleculares, acelerando um desemaranhamento das **cadeias da região amorfa.** Somando-se à tensão constante, o material irá se comportar como um material em processo de falha por fluência.

COMO AUMENTAR A RESISTÊNCIA AO ESCR DO PRODUTO?

Sabendo que a separação das lamelas cristalinas pelo desemaranhamento e rompimento das moléculas na região amorfa é o mecanismo da falha por ESCR, é necessário que uma melhoria atue nessa região para maior resistência.

As **tie molecules** ou **moléculas de amarração** são as responsáveis por essa melhoria. Elas são grandes o suficiente para participarem da ordenação de mais de uma lamela. Porém, para que essa molécula participe da lamela adjacente é necessário acrescentar um "defeito" em sua cadeia, que são os **comonômeros**.

Eles favorecem o envolvimento dessas moléculas em duas ou mais lamelas, passando pela região amorfa, sendo essencial para a propriedade de resistência ao ESCR.



PRODUTOS BRASKEM RIGEO

Os produtos da família Braskem Rigeo são uma evolução dos grades de sopro para produção de frascos e contêineres. São produtos bimodais com alta rigidez, ótima resistência ao impacto e elevada resistência ao ESCR. A família conta com grades para produção desde frascos até embalagens de 60 L.

Rigeo 4950HSM

Recomendado para a produção de frascos para produtos químicos e agroquímicos. Com maior índice de fluidez e maior densidade, esse produto se destaca por possibilitar melhor processabilidade e maior rigidez.

Propriedade Típica	Método	GF4950HS	Rigeo 4950HSM	Unidade
Densidade	ASTM D 792	0,951	0,953	g/cm³
Índice de Fluidez	ASTM D 1238	0,21	0,31	g/10 min
Módulo de Flexão Secante 1%	ASTM D 790	1100	1200	MPa
Resistência ao Impacto	ISO 8256	110	110	kJ/m²
ESCR	Braskem	300	>300	min

Rigeo HD1954M

Recomendado para produção de contêineres até 20 L, seu diferencial é maior rigidez, melhor processabilidade e elevada ESCR.

Propriedade Típica	Método	GF4950HS	Rigeo HD1954M	Unidade
Densidade	ASTM D 792	0,951	0,954	g/cm³
Índice de Fluidez (190°C/2,16 kg)	ASTM D 1238	0,21	0,19	g/10 min
Módulo de Flexão Secante 1%	ASTM D 790	1100	1250	MPa
Resistência ao Impacto	ISO 8256	110	120	kJ/m²
ESCR	Braskem	300	>400	min

Rigeo HD1053M

Possui o maior valor de ESCR, conciliando rigidez e resistência ao impacto. Indicado para a produção de embalagens de 10 L - 60 L.

Propriedade Típica	Método	HS5407	Rigeo HD1053M	Unidade
Densidade	ASTM D 792	0,954	0,953	g/cm³
Índice de Fluidez (190°C/2,16 kg)	ASTM D 1238	7	10	g/10 min
Módulo de Flexão Secante 1%	ASTM D 790	1200	1200	MPa
Resistência ao Impacto	ISO 8256	160	150	kJ/m²
ESCR	Braskem	>300	>1000	min

Braskem

Sobre o time de TS&D da Braskem

Somos um time de **engenheiros de alta performance** especializados nos diversos segmentos de mercados em que atuamos. Nossa missão é desenvolver soluções para nossos clientes combinando inovação, sustentabilidade e tecnologia.

Seu desafio é o nosso propósito.

NO NOSSO SITE, VOCÊ ENCONTRA MAIS CONTEÚDOS COMO ESTE.

ACESSE AQUI A PLATAFORMA